Research

Medical Sciences

Title :

Development of Mathematical Models for Enhanced EMG based Force Estimation in Dynamical Muscle Contractions

Area of research :

Medical Sciences

Focus area :

Biomedical Engineering

Principal Investigator :

Prof. Ramakrishnan Swaminathan, Indian Institute Of Technology (IIT) Madras, Tamil Nadu

Timeline Start Year :

2024

Timeline End Year :

2027

Contact info :

Details

Executive Summary :

Human movement relies heavily on the generation of force from skeletal muscle contractions, which are determined by the central nervous system's processing units. Accurate force estimation is crucial in rehabilitation, prostheses, sports, and clinical diagnostics. Surface electromyography (SEMG) is a non-invasive technique for measuring the electrical activities of contracting skeletal muscles, but the relationship between EMG and force has not been explored well in daily life activities. Developing mathematical models to establish the EMG-force relationship is challenging due to system nonlinearities and intra- and intersubjective muscle dynamics variations. This research aims to develop mathematical models that combine physiological models and kinematic data for force prediction. The models will be adapted to represent muscle physiology and motor neurons, and novel methodological schemes will be employed for predicting force at short intervals. The objectives of this research are to develop models for surface EMG signals generation, establish SEMG-force relations, and validate the models with real-time EMG and force measurements.

Total Budget (INR):

6,60,000

Organizations involved